GENE THERAPY ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive hematopoietic progenitor cells
نویسندگان
چکیده
High gene transfer efficiencies have been difficult to achieve in hematopoietic progenitor cells (HPCs) but are important to therapeutic success of HPC gene therapy. Efficient gene transfer is especially challenging with use of column-purified vector for clinical application, as opposed to centrifuged vector commonly used for research. We investigated novel approaches to increase transduction by using a clinically applicable protocol and quantities of column-purified lentiviral vector. Recognizing the association of adenosine 5 -triphosphate (ATP)–binding cassette (ABC) transporters with HPC biology, we investigated the effect of transporter inhibitors on transduction. We found the ABC transporter inhibitor verapamil improved transduction efficiency 2to 6-fold into CD34 cells isolated from mobilized peripheral blood, bone marrow, and cord blood. Verapamil also improved transduction in human SCID (severe combined immunodeficient) repopulating cell (SRC) transduction 3to 4-fold, resulting in 80% to 90% transduction levels in mice receiving primary and secondary transplants without alterations in multilineage reconstitution. Additional ABC transporter substrate inhibitors like quinidine, diltiazem, and ritonavir also enhanced transduction 2to 3-fold, although ABC transporter inhibitors that are not substrates did not. Enhanced transduction was not observed in mature hematopoietic cells, neurospheres, mesenchymal stem cells, or hepatocytes. Enhancement of transduction in HPCs was observed with vesicular stomatitis virus-G (VSV-G)– pseudotyped lentiviral vector but not with vector pseudotyped with RD114. Thus, we present a new approach for efficient delivery to primitive HPCs by VSV-G– pseudotyped lentiviral vectors. (Blood. 2004;104:364-373)
منابع مشابه
ABC transporter inhibitors that are substrates enhance lentiviral vector transduction into primitive hematopoietic progenitor cells.
High gene transfer efficiencies have been difficult to achieve in hematopoietic progenitor cells (HPCs) but are important to therapeutic success of HPC gene therapy. Efficient gene transfer is especially challenging with use of column-purified vector for clinical application, as opposed to centrifuged vector commonly used for research. We investigated novel approaches to increase transduction b...
متن کاملLentiviral vector-mediated transduction of adult neural stem/progenitor cells isolated from the temporal tissues of epileptic patients
Objective(s): Neural stem/progenitor cells (NS/PCs) hold a great potential for delivery of therapeutic agents into the injured regions of the brain. Efficient gene delivery using NS/PCs may correct a genetic defect, produce therapeutic proteins or neurotransmitters, and modulate enzyme activation. Here, we investigated the efficiency of a recombinant lentivirus vector ...
متن کاملStable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors.
We compared the efficiency of transduction by an HIV-1-based lentiviral vector to that by a Moloney murine leukemia virus (MLV) retroviral vector, using stringent in vitro assays of primitive, quiescent human hematopoietic progenitor cells. Each construct contained the enhanced green fluorescent protein (GFP) as a reporter gene. The lentiviral vector, but not the MLV vector, expressed GFP in no...
متن کاملLentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages
BACKGROUND: RNA based antiviral approaches against HIV-1 are among the most promising for long-term gene therapy. These include ribozymes, aptamers (decoys), and small interfering RNAs (siRNAs). Lentiviral vectors are ideal for transduction of such inhibitory RNAs into hematopoietic stem cells due to their ability to transduce non-dividing cells and their relative refractiveness to gene silenci...
متن کاملGene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کامل